Water Security: In Search of the Optimal Balance

Robert Cardinalli
International Development Group
Research Triangle Institute, USA

The Research Triangle Institute established by Duke University, University of North Carolina and North Carolina State University is an independent, nonprofit institute that provides research, development, and technical services to government and commercial clients worldwide.

RTI is the 2nd largest research institute in the USA with a staff of more than 2,800 supporting projects in more than 40 countries: e.g. RTI is responsible for designing most of the US government regulations and systems protocols for the US EPA.
RTI pursues comprehensive, multidisciplinary research activities in the following major areas of study:

- **Health Research** – incl. public health policy, economics, epidemiology, genetics, and infectious diseases
- **Drug Discovery and Development** – from discovery, synthesis and design to toxicology and metabolic analysis to comprehensive clinical trial and drug assessment services
- **Education and Training Research**
- **Survey Research and Services** - survey & data management services, & quantitative and qualitative statistical analysis

- **International Development** - public health, education, governance and management, urban development, water resources management, global climate change, environmental resource management, and public finance
- **Economic and Social Research** – examines technology, agriculture, judicial, and other social and economic policies
- **Advanced Technology Research and Development** - development and engineering of innovative technologies for practical application; intellectual asset management services for the global market
• **Energy Research** - research & development of technologies for the production and use of clean fuels

• **Environmental Research Services** – environmental standards research & scientific, technical, and policy analysis of environmental issues

• **Laboratory and Chemistry Services**
 Laboratory-based research and services in analytical chemistry, forensic science, environmental toxicology, testing and analysis, quality standards, and lab certification

Water Security: In Search of the Optimal Balance

Water Security:

Threats and Opportunities

1. **Water & Development**: water both hampers & promotes economic and social growth

2. **Water Security & Optimal Balance**: the water hardware vs. software conundrum

3. **Water & Measured Development**: keying deliberate decision-making to responsible policy and practical implementation
Water: the **good**, the **bad** & the **ugly**

A basis of production, growth & socio-political stability

A basis of infrastructure devastation, perpetuating poverty & inciting conflict

Threats to Global Water Security

- World population explosion
- Rapid human shifts from rural to urban
- Major dietary change behavior
- Increasing pollution of water resources
- Over-abstraction of groundwater
- Issues created by climate change
Water: historically a source of economic devastation, stagnating poverty & political conflict

- Scarcity, Drought & Famine
- Flood & Inundation
- Landslides
- Desertification
- Contamination
- Disease & Epidemic
- Conflicts & Wars

Gujarat State, India August 2008

Water: historically a source of economic devastation, stagnating poverty & political conflict

- Scarcity, Drought & Famine
- Flood & Inundation
- Landslides
- Desertification
- Contamination
- Disease & Epidemic
- Conflicts & Wars

Bangkok, November 2011
Water: historically a source of economic devastation, stagnating poverty & political conflict

- Scarcity, Drought & Famine
- Flood & Inundation
- Landslides
- Desertification
- Contamination
- Disease & Epidemic
- Conflicts & Wars

Western Nepal, August 2011
Water: historically a source of economic devastation, stagnating poverty & political conflict

- Scarcity, Drought & Famine
- Flood & Inundation
- Landslides
- Desertification
- **Contamination**
- Disease & Epidemics
- Conflicts & Wars

Hrazdan River, Armenia 2010

Water: historically a source of economic devastation, stagnating poverty & political conflict

- Scarcity, Drought & Famine
- Flood & Inundation
- Landslides
- Desertification
- Contamination
- **Disease & Epidemics**
- Conflicts & Wars

Indonesia, July 2005
Water: historically a source of economic devastation, stagnating poverty & political conflict

- Scarcity, Drought & Famine
- Flood & Inundation
- Landslides
- Desertification
- Contamination
- Disease & Epidemics
- Conflicts & Wars

Global Water Flashpoints 2011

Water: historically a source of economic growth, basic requirements for survival, and production, growth & stability

- Robust communities
- Sustainable ecosystems
- Food production
- Energy generation
- Transportation
- Culture and Religion
- Socio-political Stability
Water: historically a source of economic growth, basic requirements for survival, and production, growth & stability

- Robust communities
- **Sustainable ecosystems**
- Food production
- Energy generation
- Transportation
- Culture and Religion
- Socio-political Stability
Water: historically a source of economic growth, basic requirements for survival, and production, growth & stability

- Robust communities
- Sustainable ecosystems
- Food production
 - **Energy generation**
- Transportation
- Culture & Religion
- Socio-political Stability
Water: historically a source of economic growth, basic requirements for survival, and production, growth & stability

- Robust communities
- Sustainable ecosystems
- Food production
- Energy generation
- Transportation
- **Culture & Religion**
- Socio-political Stability

Water: historically a source of economic growth, basic requirements for survival, and production, growth & stability

- Robust communities
- Sustainable ecosystems
- Food production
- Energy generation
- Transportation
- **Culture & Religion**
- **Socio-political Stability**
Water Security: Threats and Opportunities

1. **Water & Growth**: water both hampers & promotes economic and social growth

2. **Water Security & Optimal Balance**: the water hardware vs. software conundrum

3. **Water & Responsible Growth**: keying deliberate decision-making to responsible policy and practical implementation

Water Security & the Optimal Balance

Countervailing forces
- basis for production, health, growth & cooperation
- a cause of destruction, poverty & conflict

Demand & risk management
- dependable, predictable & adequate quantity & quality of water for agriculture, municipal services, industry and basic health
- manageable levels of risk of unanticipated water-related impacts

Water Security: it’s all about balancing the pluses and the minuses
Water Security: the economic growth correlate
Most regions with high rainfall/runoff variability/unpredictability are poor; knowledge & capital deficits create high risk

Developing countries face more challenging climate conditions
Wealthy nations share a small window of favorable climate (low variability; moderate rainfall)

Water Security:
dependable, predictable & adequate quantity & quality of water for agriculture, municipal services, industry and basic health AND manageable levels of risk of unanticipated water-related impacts

Optimal Balance
investment needed to achieve Water Security
Water hardware vs. software: the elephant in the living room

COMMON CONFLICTING PERSPECTIVES

• To invest in small-scale water infrastructure
• To invest in large-scale water infrastructure
• To invest in water institutions & management

OR

• To blend all three, reflecting needs & situation

Countries prone to water insecurity must leverage all options & select & implement sensibly

To dam or not to dam, that is the question...

• Water security achieved with hydrological variability requires water storage & regulation
• Water storage: natural (aquifers, lakes, wetlands), small or large
• Water storage: artificial (aquifers, dams & reservoirs), small or large
• Industrial countries: water secure, invested in what they need (small/large, natural/artificial)

Water-insecure countries need to carefully assess sustainable storage options before investing scarce resources
Water Security & the Optimal Balance

• Developing countries: seriously limited by hydrology

• Intermediate countries: constrained by hydrology

• Industrial countries: in command of hydrology
Water Security & the Optimal Balance

- **Developing countries:** *seriously limited by hydrology*
- **Intermediate countries:** *constrained by hydrology*
- **Industrial countries:** *in command of hydrology*

Japan Case Study
(Japan Water Forum 2006)

- WSS coverage: UP
- Morbid/mortality: DOWN

- Paddy efficiency: UP

- Hydropower: MATURE
 - Thermal: UP

Source: Production, Marketing and Consumption Division, Ministry of Agriculture, Forestry and Fisheries. "Statistics on Crops"

Planning Division, Ministry of Agriculture, Forestry and Fisheries. "Annual Statistics of Foods in Japan"

Source: Office of Gas and Electricity Markets, Agency for Natural Resources and Energy. "Handbook of electric power industry"

Water Security & the Optimal Balance
(Japan Water Forum 2005)

Case study of Japan

- "Establishment of water resource development system (1961) as well as stable supply of industrial and urban water"
- "Environment-friendly water infrastructure investment"
- "Greater Gains 21st century"

Investment in Infrastructure & Institutions

"Initial Investment" in 1960-1961

"MIP" (Minimum Infrastructure & Institutional Platform)

- "Frequent flood damages"
- "Spread of infectious diseases"
- "Lack of electric power"
Water Security: Threats and Opportunities

1. **Water & Growth**: water both hampers & promotes economic and social growth

2. ‘**Water Security’ & ‘Minimum Platform’**: the water hardware vs. software conundrum

3. **Water & Responsible Growth**: keying deliberate decision-making to responsible policy and practical implementation

Water: Importance of Scientific and Social Research in Maintaining Optimal Balance

- Very often scientific research on water resources and management is compartmentalized into convenient sectors: engineering, policy, economic, social, political, hydro-meteorological.

- To achieve significant efficiencies in water security, water solutions should be considered in context of entire water system from:
 - spatial inclusiveness: “cloud to coast”
 - upstream downstream dynamics
 - multiple sources and types of water characterized and assessed (free river flows, green water, grey water, brown water, etc.)
 - options for water storage and access during dry seasons
 - river basin and watershed management to be considered in context of livelihood growth
Water: Importance of Scientific and Social Research in Maintaining Optimal Balance

Research needed identifying new and sustainable technologies in:
- Storage of excess flows during floods & surface water storage
- Sustainable groundwater use & better understanding of aquifers
- Holistic crop production: OFWM efficiency (irrigation & drainage alongside innovative crop science research)
- Improvements in plant breeding to reduce irrigation demand
- More efficient industrial production processes
- Improved desalination techniques & management of brine waste
- Better modeling of water systems
- Transparent water data management & cadastral information systems shared between countries

Matching Incentives to Improve Water Governance

- Incentive compatibility makes certain that innovations and reforms are supported by adequate and appropriate incentives
- Complex situations with multiple stakeholders require a complex solution based on incentives tailored to each stakeholder category need, otherwise water governance will be dysfunctional
- IC index entails four essential stages:
 - Specifying Water Security goals and objectives
 - Setting stakeholder essential services & relations
 - Identifying applied mechanisms
 - Assessing efficacy of the existing and new mechanisms for incentive creation
<table>
<thead>
<tr>
<th>Governance to Empower Consumers to Manage Water Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Restructure government-dominated organizational structure assigning water governance to end users</td>
</tr>
<tr>
<td>• Require transparent environment of support, opportunities and investment from government</td>
</tr>
<tr>
<td>• User empowerment to: 1) ensure equitable distribution of water supplies and services, 2) maintain infrastructure performance integrity, 3) ensure local government technical and political support after authority devolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Governance to Empower Consumers to Manage Water Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main tool elements – strengthen ability to:</td>
</tr>
<tr>
<td>• Develop consultative decision-making process</td>
</tr>
<tr>
<td>• Undertake participatory infrastructure O&M</td>
</tr>
<tr>
<td>• Position consumers to directly oversee service providers</td>
</tr>
<tr>
<td>• Develop multi-level management systems</td>
</tr>
<tr>
<td>• Ensure compatibility of local cultural norms, traditional values, gender mainstreaming, and allocation and distribution</td>
</tr>
<tr>
<td>• Inculcate self-assessment capability to manage within local water management organizations to continue growth and evolution</td>
</tr>
</tbody>
</table>
Water Security, Optimal Balance, Logical and Rational Growth....

- **Water security**: reducing destructive, increasing productive impacts of water (underpinning not undermining growth)
- Achieving **water security** essential for growth & development
- **Optimal balance** of infrastructure & institutions to achieve water security
- All industrial countries above **optimal balance** (often low: a reason for early growth)
- Most poor countries below **optimal balance** (often high: a reason for constrained growth)
- **Major investment** needed for growth in many poor countries
- **Balanced investment** in water infrastructure & institutions
- **Adaptive investment** to minimize social & environmental costs
- **Inclusive investment** to maximize stakeholder values

In a globally challenged economic environment, closing that gap is a major challenge.

Thank you